Aura MLS observations of the polar middle atmosphere: Dynamics and transport of CO and H$_2$O

Jae N. Lee1,2, Dong L. Wu1, Gloria L. Manney1,3, Michael J. Schwartz1, Alyn Lambert1, Nathaniel J. Livesey1, Kenneth R. Minschwaner3, Hugh C. Pumphrey4, and William G. Read1

1. Jet Propulsion Laboratory, Caltech, Pasadena, CA
2. NASA Postdoctoral Program Fellow
3. New Mexico Institute of Mining and Technology, Socorro, NM
4. University of Edinburgh, UK
Outline

• EOF analysis and annular modes
• NAM and SAM from MLS GPH, CO, and H$_2$O
• Vertical descent of NAM and SAM
• Perturbations at 50 km descend to the lowermost stratosphere;
• Tropospheric weather patterns follow;
• Surface pressure perturbation patterns are called the Arctic Oscillation (AO) pattern;
• Stratospheric events show impacts on location of storm tracks.
• MLS observations – up to 90km. EOF analysis from Nov. – March.
- Vertical and horizontal gradients of zonal mean CO and H2O structure.
- How does the polar descent shape up the tracer distribution?
- What is going to change during SSW? -> with strong perturbations.
If the tracer distribution has a meridional gradient that is not constant with height and time, and has a pronounced maximum somewhere, sometime, it may contain downward transport information.
EOF1 or NAM/SAM

GPH

(a) GPH (m): low index: 0.1 hPa
(b) GPH (m): high index: 0.1 hPa

CO

(d) CO (ppmv): low index: 0.1 hPa
(e) CO (ppmv): high index: 0.1 hPa

% of Variance

(c) NAM and SAM: variances (%)
(f) CNAM and CSAM: variances (%)
Low Index

EOF1 or NAM/SAM

High Index

% of Variance

(g) $\text{H}_2\text{O} \text{ (ppmv) low index: 0.1 hPa}$

(h) $\text{H}_2\text{O} \text{ (ppmv) high index: 0.1 hPa}$

(i) $\text{H}_2\text{O} \text{ (ppmv) low index: 10 hPa}$

(j) $\text{H}_2\text{O} \text{ (ppmv) high index: 10 hPa}$

(k) $\text{H}_2\text{O} \text{ (ppmv) low index: 56 hPa}$

(l) $\text{H}_2\text{O} \text{ (ppmv) high index: 56 hPa}$

(m) HNAM and HSAM: variances (%)
60°N-82°N

CO (log ppmv)

H2O (log ppmv)

Mesospheric CO NAM Index

- Mesosphere and stratosphere CNAM anti-correlated

- Planetary and Gravity wave coupling

- weak vortices in the stratosphere (low index)

→ Prevents gravity wave propagating upward

→ forming strong vortex in the mesosphere

→ Siskind et al. [2010]
Conclusion

• NAM/SAM (GPH) dominates the variance of polar winter in the broad range of altitude.
• MLS CO acts as a good tracer to polar atmospheric dynamics down to 30 km.
• More Rapid descent occurs in the upper mesosphere than in the stratosphere.
• Strong coupling is evident between middle and upper atmospheric CNAM, through interactions between planetary and gravity waves.
Acknowledgement

• All MLS team members
• Co-authors and reviewers
GPH

H₂O

0.1 hPa

10 hPa

30 hPa

CO

(a) SAM: 0.1 hPa: 88%
EOF2: 0.1 hPa: 2.5%
EOF3: 0.1 hPa: 1.6%

(b) CSAM: 0.1 hPa: 49%
EOF2: 0.1 hPa: 3.2%
EOF3: 0.1 hPa: 2.6%

(c) HSAM: 0.01 hPa: 57%
EOF2: 0.01 hPa: 4.6%
EOF3: 0.01 hPa: 2.7%

(d) HSAM: 4.64 hPa: 52%
EOF2: 4.64 hPa: 8.8%
EOF3: 4.64 hPa: 4.2%

(e) HSAM: 56.2 hPa: 49%
EOF2: 56.2 hPa: 6.4%
EOF3: 56.2 hPa: 5.9%

Jae N. Lee (JPL) / Aura 2010 Science Meeting
• 100-yr model runs and NCEP re-analysis reveal a strong leading EOF mode, the annual mode;

• Variations are forced by eddy fluxes in the troposphere;

• Stationary waves dominate the NH eddies;

• High-frequency transients dominate the SH eddies.

Jae N. Lee (JPL) / Aura 2010 Science Meeting
GPH

Strong SSW

(a) GPH : 2005

2006

2007

2008

2009

2010

Jae N. Lee (JPL) / Aura 2010 Science Meeting
Rosenfield et al. (1994)

- 1.3-2 km per month in the NH lower stratosphere
- 0.4-0.9 km per month in the SH lower stratosphere
- Descent rate increasing rapidly with height

Antarctic air parcel descent inside vortex

Modeled Antarctic air parcel descent inside vortex

Jae N. Lee (JPL) / Aura 2010 Science Meeting
• AO is often called Annular mode in the stratosphere.
• Annular mode and sea ice extent?
• Dynamical coupling between the troposphere and stratosphere?
• Impacts of global warming on AO?
• Regional extreme weather?

White England

MODIS image on Jan 7, 2010

Credit: National Snow and Ice Data Center