Validation of TES Methane with HIPPO Observations

Application to Adjoint Inverse Modeling of Methane Sources

Aura Science Team Meeting

29 September 2010

Kevin J. Wecht, DJ Jacob, SC Wofsy, EA Kort, A Eldering, JR Worden, SS Kulawik, GB Osterman, VH Payne
Adjoint Inverse Modeling of Methane Sources

TES Methane *(Worden, Kulawik)*

Validation

GEOS-Chem CTM

HIPPO Methane *(Wofsy, Kort)*

Apriori Sources

GEOS-Chem Adjoint

HIPPO Methane provides:
- Large number of profiles
- Wide latitudinal coverage
- Remote from sources (reduces colocation error)

Other Methane

Adjoint inverse analysis

OPTIMIZATION OF SOURCES

EDGAR v4, Kaplan, GFED 2, Yevich and Logan [2003]
• Methane retrieval 7.658 – 7.740 μm
• Averaging kernels peak 200-400 hPa
• Degrees of Freedom for Signal 0.5-2.0
• ~50% of TES observations pass CH$_4$ quality filter
• Unit of comparison for this work is Representative Tropospheric Volume Mixing Ratio (RTVMR)

Reduce all profiles to 1 piece of information representative of tropospheric mixing ratio.
HIAPER Pole-to-Pole Observation Program (HIPPO)

HIPPO I

HIPPO II

HIPPO I - interpolated methane

Pacific transect (flights 3-7 of 10)
Dominant variability with latitude
Little variability in vertical

• Five missions:
 - Jan, Nov 2009
 - April 2010, June & Aug 2011
• > 700 vertical profiles by finish
 - 80% surface – 330 hPa
 - 20% surface – < 200 hPa
• Methane Instrument Properties
 - Frequency: 1 Hz
 - Accuracy/Precision: 1.0/0.6 ppb
Using HIPPO to Define Coincidence Criteria

Validation characterizes mean bias and residual error. Residual error contains contributions from:
1) error in the retrieval
2) colocation error

HIPPO profiles: ~ 250 km
TES observation: 5 x 8 km

Coincidence requirements of +/- 750 km and +/- 24 h are sufficient.

Mean Bias
Residual Standard Dev.
Observations
HIPPO v. TES by Latitude

HIPPO 1
Jan 9-30, 2009

HIPPO 2
Oct 22 – Nov 20, 2009

Positive bias and significant noise, but latitudinal gradient roughly captured.
HIPPO v. TES Difference by Latitude

HIPPO 1
Jan 9-30, 2009

HIPPO 2
Oct 22 – Nov 20, 2009

HIPPO I:
- bias = 73.7 ppb,
- residual std dev = 43.1 ppb
- ≈ 3 x self-reported error

HIPPO II:
- bias = 59.9 ppb,
- residual std dev = 48.4 ppb
- marginally sig. land-ocean diff
Distribution of TES Residual Errors

HIPPO I
1/9 - 1/30, 2009

HIPPO II
10/22 – 11/20, 2009

Error distributions

Scatterplots

Normally distributed errors are important for derivation of inverse cost function.
The Ability of TES to Capture Latitudinal Gradients

TES captures HIPPO I & II latitudinal gradients on a scale of ~20°
Twin Tests for Inversion of Methane Sources

Why perform twin tests?
- Test the inverse calculation
- Understand the effects of TES error and apriori
- Find optimum length of assimilation period

The twin test methodology
- “Observe” GEOS-Chem with TES
- Add error to pseudo-observations of magnitude determined by HIPPO validation
- Begin adjoint inversion with incorrect apriori
- Goal: to recover original emission field.

of Observations July 2008 total = 22038
Twin Test Results

Optimize July 2008 emissions, assimilating data for variable lengths of time.

<table>
<thead>
<tr>
<th>Assimilation Length</th>
<th># observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>1 month</td>
</tr>
<tr>
<td>Middle</td>
<td>2 months</td>
</tr>
<tr>
<td>Bottom</td>
<td>1 year</td>
</tr>
</tbody>
</table>

Tradeoff between number of observations and spatial resolution of emissions
TES V004 alone is not sufficient for use in a global adjoint inversion.
Next Steps

- Assimilate TES V004 CH$_4$
- Evaluate inversion results with NOAA GMD surface observations
- Validate new TES CH$_4$ retrieval by John Worden
 - sensitivity near surface
- Assimilate more satellite products (New TES CH$_4$, SCIAMACHY, AIRS, GOSAT).
- Zoom in on North America using GEOS-Chem nested grid capability (0.5° x 0.667°)

I will simultaneously assimilate multiple satellite data sets
• TES captures latitudinal gradient in HIPPO data at ~20° resolution
• TES is biased high and residual instrument error is 3 x self-reported range
 – 73.7 ± 43.1 ppb during HIPPO I
 – 59.9 ± 48.4 ppb during HIPPO II
• Colocation error in validation is negligible
• Intend to publish results of HIPPO comparison.
• Enabling Inverse Modeling:
 – Quantification of bias, characterization of error
 – Robust latitudinal gradient with greater coverage than surface stations
 – Assimilation period ≥ 1 month required.
 – Tradeoff between length of assimilation period and spatial scale of interpretability of results
• Begin inversion with TES CH₄
• Evaluate inversion results with NOAA GMD surface observations
• Incorporate additional satellite CH₄ products and focus on N.A.